Miscellaneous

- We're going to take a picture during your exploratory data analysis presentations on Friday, so please wear your BRE t-shirts
- Everyone struggled with the readr/tidyr assignment, so we'll be going over that as a group at some point next week

Clustering to Check for Effects and Differential Expression

2021-07-21

RNA-seq Counts Must be Normalized

- Start with counts of reads mapping to a gene
- Data is extremely right-skewed
 - True of all sequencing data
 - Formally, this is a negative binomial distribution
- Multiple normalized counts that people use to compensate for it

RNA-seq Counts Must be Normalized

RNA-seq Counts Must be Normalized

Normalization Method	Description	Corrects For:	Use For:
Counts/Fragments Per Million (CPM/FPM)	Counts scaled by the total number of reads in the library	 sequencing depth 	 Sample comparison NOT for differential expression testing
Transcripts Per kilobase Million (TPM)	Counts per length of transcript scaled by number of reads	sequencing depthgene length	 Sample comparison NOT for differential expression testing
Reads/Fragments Per Kilobase of exon per Million reads (RPKM/FPKM)	Same as TPM, but per exon instead of per transcript	sequencing depthgene length	DO NOT USE because they values are not comparable between samples
DESeq2 median of ratios	counts divided by sample-specific size factors determined by median ratio of gene counts relative to geometric mean per gene	sequencing depthRNA composition	 NOT Sample comparison differential expression testing
edgeR Trimmed Mean of M values (TMM)	uses a weighted trimmed mean of the log expression ratios between samples	sequencing depthgene lengthRNA composition	 Sample comparison differential expression testing

Why do we cluster the data?

Why do we cluster the data?

GOOD: Data clusters by effect, not batch

Why do we cluster 2 the data? Dim2 **BAD: Data clusters** 0 by effect, then **GOOD:** Data clusters by effect, batch not batch -2 2 Dim2 $\mathbf{0}$ -1 -2 -2 2 -1 0 Dim1

2

0

Dim1

-2

How does differential expression work?

Expression level

Deviations from global mean

Significant difference

No significant difference