
Processing RNA-seq Data
2020-07-23

Getting Files Off the Server

WindowsMac

Cyberduck

Setting Up a Project

Why do I need to document my work?

1.For your future
self

Why do I need to document my work?

1.For your future
self

Why do I need to document my work?

1.For your future
self

Why do I need to document my work?

1.For your future
self

2.For everybody
else

Why do I need to document my work?

1. For your future self
2. For everybody else

For your next step
in your career

Setting Up Project Documentation

1. Create a new folder
2. Open a plain text file in a new to take notes in / document

your work
3. Make that folder into a Git repository and back it up to

GitHub

Quick Review: How does Illumina
sequencing work?

Illumina Sequencing
• General overview

• For RNA-seq, extract RNA and remove
ribosomal RNA as well

Illumina Sequencing
Make tiles of identical DNA to read

Illumina Sequencing

Paired-End
Sequencing
• Sequence both ends of the fragment

• Because sequencing is always 5’ to 3’, the
read pairs will be in the opposite
orientation

• 90% of the time, the programs you use
will be aware of the difference in
orientation and take care of it for you

• Because the distance between the pairs is
known (depends on the sequence length
you asked for) mapping is more accurate,
especially in highly repetitive regions of
the genome

• For RNA-seq, paired end reads are
necessary if you want to look at
alternative splicing

• More expensive than single end
sequencing

What does raw sequencing data
look like?

FastQ Files

FastQ Files

• Fastq files (usually) end in either
fastq.gz or fq.gz (or they
can be missing the .gz extension)

FastQ Files

• Fastq files (usually) end in either
fastq.gz or fq.gz (or they
can be missing the .gz extension)
• File names will have some

combination of the following
information (depends on the
sequencer):
• Sample ID
• Lane
• Read number
• Unique ID from the company or

sequencer

FastQ Files

• Fastq files (usually) end in either
fastq.gz or fq.gz (or they
can be missing the .gz extension)
• File names will have some

combination of the following
information (depends on the
sequencer):
• Sample ID
• Lane
• Read number
• Unique ID from the company or

sequencer

FastQ Files

• Fastq files (usually) end in either
fastq.gz or fq.gz (or they
can be missing the .gz extension)
• File names will have some

combination of the following
information (depends on the
sequencer):
• Sample ID
• Lane
• Read number
• Unique ID from the company or

sequencer

What does a raw read look like?

What does a raw read look like?
read ID

What does a raw read look like?
read ID

pair/mate number

What does a raw read look like?
read ID

pair/mate number

sequence

What does a raw read look like?
read ID

pair/mate number

sequence

nothing

What does a raw read look like?
read ID

pair/mate number

sequence

base quality scorenothing

What does a raw read look like?
read ID

pair/mate number

sequence

base quality scorenothing

What does a raw read look like?
read ID

pair/mate number

sequence

base quality scorenothing

NOTE: YOUR SEQUENCING DATA WILL
FREQUENCLY LOOK DIFFERENT

• File names vary from sequencer to sequencer
• Read IDs also depend on the sequencer and

will probably be different from the example
here

• Quality encoding can be different if you’re
using older or public data

Quality Check

FastQC

• Before going forward, we want to check the quality of the data
• How much did the sequencer fail?
• Did we sequence mostly our sample DNA?

• FastQC is a program from the Babraham Institute in the UK that
creates an html report on the quality of the sequencing data
• Has 11 quality control checks that it does

Basic Statistics
Good Quality Bad Quality

Per base sequence quality
Good Quality Bad Quality

Per tile sequence quality
Good Quality Bad Quality

Per sequence quality scores
Good Quality Bad Quality

Per base sequence content
Good Quality Bad Quality

Per sequence GC content
Good Quality Bad Quality

Per base sequence quality
Good Quality Bad Quality

Per base sequence quality
Good Quality Bad Quality

Sequence Duplication Levels
Good Quality Bad Quality

Overrepresented sequences
Good Quality Bad Quality

Adapter Content
Good Quality Bad Quality

Run FastQC

1. Go to the RNA-seq data directory
2. Make a directory to put the FastQC reports into, fastqc
3. Run fastqc on the samples
for i in *.fastq.gz; do fastqc $i -o fastqc/;
done

Trim Bad Quality Sequences

What is trimming and why do it?

What is trimming and why do it?

• Trimming removes sequencing
adapters, bad quality sequences,
and/or other biased sequence
information

What is trimming and why do it?

• Trimming removes sequencing
adapters, bad quality sequences,
and/or other biased sequence
information
• Why is that important?
• Helps prevent incorrect base calls

by removing poor quality
information
• Increases speed and accuracy of

alignment by removing artificial
sequences and low quality
sequences

What is trimming and why do it?

• Trimming removes sequencing
adapters, bad quality sequences,
and/or other biased sequence
information
• Why is that important?
• Helps prevent incorrect base calls

by removing poor quality
information
• Increases speed and accuracy of

alignment by removing artificial
sequences and low quality
sequences

• Trimming does two
complementary things:

1. Removes any sequence
information that comes from
library preparation or
sequencing

2. Removes low quality bases / low
quality reads

Trim Sequences

1. Go back up to the rnaseq directory
2. Make a folder to put the analysis results in, analysis
3. Make a folder inside the analysis folder to put the trimmed reads in,
analysis/01_trim

Trim Sequences

for i in rnaseq_data/*R1.fastq.gz;

do trim_galore

--paired

--fastqc

--illumina

--output analysis/01_trim/

--retain_unpaired

$i

${i/R1/R2};

done

Trim Sequences

for i in rnaseq_data/*R1.fastq.gz;

do trim_galore

--paired

--fastqc

--illumina

--output analysis/01_trim/

--retain_unpaired

$i

${i/R1/R2};

done

loop condition

Trim Sequences

for i in rnaseq_data/*R1.fastq.gz;

do trim_galore

--paired

--fastqc

--illumina

--output analysis/01_trim/

--retain_unpaired

$i

${i/R1/R2};

done

loop condition

call the program

Trim Sequences

for i in rnaseq_data/*R1.fastq.gz;

do trim_galore

--paired

--fastqc

--illumina

--output analysis/01_trim/

--retain_unpaired

$i

${i/R1/R2};

done

loop condition

call the program

reads are paired-end

Trim Sequences

for i in rnaseq_data/*R1.fastq.gz;

do trim_galore

--paired

--fastqc

--illumina

--output analysis/01_trim/

--retain_unpaired

$i

${i/R1/R2};

done

loop condition

call the program

reads are paired-end

run FastQC again after trimming

Trim Sequences

for i in rnaseq_data/*R1.fastq.gz;

do trim_galore

--paired

--fastqc

--illumina

--output analysis/01_trim/

--retain_unpaired

$i

${i/R1/R2};

done

loop condition

call the program

reads are paired-end

run FastQC again after trimming

trim Illumina adapters

Trim Sequences

for i in rnaseq_data/*R1.fastq.gz;

do trim_galore

--paired

--fastqc

--illumina

--output analysis/01_trim/

--retain_unpaired

$i

${i/R1/R2};

done

loop condition

call the program

reads are paired-end

run FastQC again after trimming

trim Illumina adapters

output goes here

Trim Sequences

for i in rnaseq_data/*R1.fastq.gz;

do trim_galore

--paired

--fastqc

--illumina

--output analysis/01_trim/

--retain_unpaired

$i

${i/R1/R2};

done

loop condition

call the program

reads are paired-end

run FastQC again after trimming

trim Illumina adapters

output goes here

keep reads where one mate fails
trimming but the other doesn’t

Trim Sequences

for i in rnaseq_data/*R1.fastq.gz;

do trim_galore

--paired

--fastqc

--illumina

--output analysis/01_trim/

--retain_unpaired

$i

${i/R1/R2};

done

loop condition

call the program

reads are paired-end

run FastQC again after trimming

trim Illumina adapters

output goes here

keep reads where one mate fails
trimming but the other doesn’t

read files

Trim Sequences

for i in rnaseq_data/*R1.fastq.gz;

do trim_galore

--paired

--fastqc

--illumina

--output analysis/01_trim/

--retain_unpaired

$i

${i/R1/R2};

done

loop condition

call the program

reads are paired-end

run FastQC again after trimming

trim Illumina adapters

output goes here

keep reads where one mate fails
trimming but the other doesn’t

By default bases
quality less than

20 will be
trimmed and if
the read falls

below 20 bp, it
will be discarded

read files

Trim Sequences

for i in rnaseq_data/*R1.fastq.gz; do trim_galore

--paired --fastqc --illumina --output analysis/01_trim/

--retain_unpaired $i ${i/R1/R2}; done

Align

How does aligning work?

How does aligning work?

How does aligning work?

STAR (Spliced Transcripts
Alignment to a Reference)

Align Sequences

1. Make a folder inside the analysis folder to put the aligned reads in,
analysis/02_align

2. Change to the trimmed reads folder analysis/01_trim

Align Sequences

for i in *val_1.fq.gz;

do STAR

--genomeDir /mnt/data/gdata/human \

/hg38/chr21/STAR_index

--readFilesIn $i ${i/R1_val_1/R2_val_2}

--readFilesCommand zcat

--outFileNamePrefix ../02_align/${i/R1*/}

--outSAMtype BAM SortedByCoordinate;

done

Align Sequences

for i in *val_1.fq.gz;

do STAR

--genomeDir /mnt/data/gdata/human \

/hg38/chr21/STAR_index

--readFilesIn $i ${i/R1_val_1/R2_val_2}

--readFilesCommand zcat

--outFileNamePrefix ../02_align/${i/R1*/}

--outSAMtype BAM SortedByCoordinate;

done

loop condition

Align Sequences

for i in *val_1.fq.gz;

do STAR

--genomeDir /mnt/data/gdata/human \

/hg38/chr21/STAR_index

--readFilesIn $i ${i/R1_val_1/R2_val_2}

--readFilesCommand zcat

--outFileNamePrefix ../02_align/${i/R1*/}

--outSAMtype BAM SortedByCoordinate;

done

loop condition

call aligner

Align Sequences

for i in *val_1.fq.gz;

do STAR

--genomeDir /mnt/data/gdata/human \

/hg38/chr21/STAR_index

--readFilesIn $i ${i/R1_val_1/R2_val_2}

--readFilesCommand zcat

--outFileNamePrefix ../02_align/${i/R1*/}

--outSAMtype BAM SortedByCoordinate;

done

loop condition

path to reference
genome

call aligner

Align Sequences

for i in *val_1.fq.gz;

do STAR

--genomeDir /mnt/data/gdata/human \

/hg38/chr21/STAR_index

--readFilesIn $i ${i/R1_val_1/R2_val_2}

--readFilesCommand zcat

--outFileNamePrefix ../02_align/${i/R1*/}

--outSAMtype BAM SortedByCoordinate;

done

loop condition

path to reference
genome

trimmed read files

call aligner

Align Sequences

for i in *val_1.fq.gz;

do STAR

--genomeDir /mnt/data/gdata/human \

/hg38/chr21/STAR_index

--readFilesIn $i ${i/R1_val_1/R2_val_2}

--readFilesCommand zcat

--outFileNamePrefix ../02_align/${i/R1*/}

--outSAMtype BAM SortedByCoordinate;

done

loop condition

path to reference
genome

trimmed read files

zipped files

call aligner

Align Sequences

for i in *val_1.fq.gz;

do STAR

--genomeDir /mnt/data/gdata/human \

/hg38/chr21/STAR_index

--readFilesIn $i ${i/R1_val_1/R2_val_2}

--readFilesCommand zcat

--outFileNamePrefix ../02_align/${i/R1*/}

--outSAMtype BAM SortedByCoordinate;

done

loop condition

path to reference
genome

trimmed read files

zipped files

write the files here

call aligner

Align Sequences

for i in *val_1.fq.gz;

do STAR

--genomeDir /mnt/data/gdata/human \

/hg38/chr21/STAR_index

--readFilesIn $i ${i/R1_val_1/R2_val_2}

--readFilesCommand zcat

--outFileNamePrefix ../02_align/${i/R1*/}

--outSAMtype BAM SortedByCoordinate;

done

loop condition

path to reference
genome

trimmed read files

zipped files

write the files here

write a sorted BAM

call aligner

Align Sequences

for i in *val_1.fq.gz; do STAR --genomeDir
/mnt/data/gdata/human/hg38/chr21/STAR_index --
readFilesIn $i ${i/R1_val_1/R2_val_2} --
readFilesCommand zcat --outFileNamePrefix
../02_align/${i/R1*/} --outSAMtype BAM
SortedByCoordinate; done

Count Features

What do you mean by count features?

• We’re going to count genes, but
you could also count:
• transcripts
• non-coding RNA

• Need an annotation file for
whatever feature you want to
count
• Going to use a gene transfer

format (GTF) file for annotations

Count Features

1. Make a folder inside the analysis folder to put the aligned reads in,
../03_count

2. Change to the trimmed reads folder ../02_align/

Count Features

for i in *.bam;

do featureCounts

-a /mnt/data/gdata/human/hg38/chr21/ \

homo_sapiens_hg38_chr21.gtf

-o ../03_count/${i/ \

Aligned.sortedByCoord.out.bam/ \

counts.txt}

-R BAM

$i;

done

Count Features

for i in *.bam;

do featureCounts

-a /mnt/data/gdata/human/hg38/chr21/ \

homo_sapiens_hg38_chr21.gtf

-o ../03_count/${i/ \

Aligned.sortedByCoord.out.bam/ \

counts.txt}

-R BAM

$i;

done

loop condition

Count Features

for i in *.bam;

do featureCounts

-a /mnt/data/gdata/human/hg38/chr21/ \

homo_sapiens_hg38_chr21.gtf

-o ../03_count/${i/ \

Aligned.sortedByCoord.out.bam/ \

counts.txt}

-R BAM

$i;

done

loop condition

call program

Count Features

for i in *.bam;

do featureCounts

-a /mnt/data/gdata/human/hg38/chr21/ \

homo_sapiens_hg38_chr21.gtf

-o ../03_count/${i/ \

Aligned.sortedByCoord.out.bam/ \

counts.txt}

-R BAM

$i;

done

loop condition

call program

path to genome
annotation file

Count Features

for i in *.bam;

do featureCounts

-a /mnt/data/gdata/human/hg38/chr21/ \

homo_sapiens_hg38_chr21.gtf

-o ../03_count/${i/ \

Aligned.sortedByCoord.out.bam/ \

counts.txt}

-R BAM

$i;

done

loop condition

call program

path to genome
annotation file

where to write
the output

Count Features

for i in *.bam;

do featureCounts

-a /mnt/data/gdata/human/hg38/chr21/ \

homo_sapiens_hg38_chr21.gtf

-o ../03_count/${i/ \

Aligned.sortedByCoord.out.bam/ \

counts.txt}

-R BAM

$i;

done

loop condition

call program

path to genome
annotation file

where to write
the output

input files are BAM

Count Features

for i in *.bam;

do featureCounts

-a /mnt/data/gdata/human/hg38/chr21/ \

homo_sapiens_hg38_chr21.gtf

-o ../03_count/${i/ \

Aligned.sortedByCoord.out.bam/ \

counts.txt}

-R BAM

$i;

done

loop condition

call program

path to genome
annotation file

where to write
the output

input files are BAM

input file

Count Features

for i in *.bam; do featureCounts -a
/mnt/data/gdata/human/hg38/chr21/homo_sapiens_hg
38_chr21.gtf -o
../03_count/${i/Aligned.sortedByCoord.out.bam/co
unts.txt} -R BAM $i; done

General Steps

1. Check quality
2. Trim
3. Align
4. Count features
5. Statistics

